

Progress Update on the Compilation, Management, and Analyses of Hydrologic and Hydrogeologic Data for Loudoun County, VA

Presented to:
Water Resources Technical
Advisory Committee

September 19, 2007

(Updated and redistributed October 31, 2007)

Review

Three general components of the work...

- Hire FTE for water resource data management
- > Compile and organize available data
- Analyze existing hydrologic and hydrogeologic data

Review

- ✓ Board approved WRTAC/staff recommendations (12/06)
- ✓ Funds transferred to B&D budget (2/07)
- ✓ Staff (w/ HR) developed description of water resource data manager position, advertised, and interviewed (2/07 5/07)
 - → Mr. Scott Sandberg hired 6/07

Review

- ✓ Staff began identifying, compiling, and organizing available data (1/07)
- ✓ Staff developed SOW tasks to analyze and evaluate data and reviewed drafts with WRTAC (2/07 6/07)

Entry of data from hydrogeologic studies

- Contracted with *Emery & Garrett Groundwater*, *Inc.* and *GeoTrans, Inc.* to provide data in digital format from a combined total of ~148 hydrostudy reports these companies had submitted to the County since the 1980s
- County staff converted ~15 hydrostudy reports (from other contractors) into digital format
- All hydrostudy data added to database (7/07)

Hire independent consultant to analyze and assess hydrologic and hydrogeologic data

- Staff worked closely with County Procurement Office
- Time issue RFP process would extend project well into 2008 (beyond WRTAC and BOS terms)
- Identified existing WMCOG contract with national engineering / environmental firm (CH2M Hill) that County could "ride" by way of WMCOG agreement

(Contracting continued)

- Comprehensive Watershed Management Plan project ("CWMP" - funded w/ EPA grant) on approximately parallel track time-wise
- CH2M Hill had resources to accomplish both scopes of work and, therefore, the work was combined into 1 contract which was signed in early August

(Contracting continued)

- Contract deliverables and invoicing divided into "hydrologic assessment" and "watershed management" parts
- As part of contract, County staff would compile available data from multiple sources and conduct initial phase of statistical analyses on major data sets

(Contracting continued)

- <u>All</u> data and initial analyses by County provided to CH2M Hill for their review in early September
- CH2M Hill currently conducting additional analyses and evaluation/assessment of hydrologic and hydrogeologic conditions

Advantages of this contracting approach:

- Allows for schedule that completes hydrologic assessment before end of 2007 (during BOS and WRTAC terms)
- Efficiency of managing 1 contract vs. 2 separate contracts

and.....

• Synergy of analyzing and conducting "hydrologic" and "watershed" work in close sequence. Promotes more complete understanding of the water resources system and results in better final products for Loudoun County.

Summary of Combined Tasks

- 1. Compile available data from multiple sources
- 2. Hydrologic data analyses (precipitation; stream flow and water quality; wells, groundwater levels, and quality; on-site sewage disposal; baseline and assessment of conditions)
- 3. Presentations to WRTAC, LWMSSC, and TLUC and report (draft and final)

Continued...

Summary of Combined Tasks

- 4. Characterize watershed conditions and identify focus areas
- 5. Develop watershed management goals and approaches
- 6. Evaluate County's planning and implementation framework and develop basic watershed implementation plan
- 7. Presentations to WRTAC, LWMSSC, and TLUC and report (draft and final)

Flowchart of Combined Contract Tasks

Comprehensive Watershed Management Plan Project Flowchart

Approximate Schedule

Approximate Schedule of General Project Tasks

						20	07							20	80	
General Task	っ	F	М	Α	М	っ	J	Α	S	0	Z	D	7	F	М	Α
Develop work scope and contracting																
Identify / compile available data									↑	1			↑	\rightarrow	\rightarrow	\rightarrow
Enhance data management system													1	→	\rightarrow	\rightarrow
Hydrologic data analyses and report											▶					
Characterize watersheds												•				
Develop focus areas / management goals													•			
Develop watershed management program														•		
Evaluate planning / implementation framework																
Develop basic implementation plan																
Final report																▼

- → On-going activity
- **▼** Report deliverable and presentation
- Workshop

Data Management

PROVISIONAL RESULTS

Water Resources Data Management

- Existing water resource and related data identified from many sources
- Selected data incorporated into water resource data management system
- Organized data sets, queries, and analytical results available for use

Data management

PROVISIONAL RESULTS

Raw Data Files

Reformatted Data Files

Each set of new or updated data requires reformatting and checking for completeness and accuracy before entry into database

₩ ve	(A Franch - NCDC - Cor													
	crosoft Excel - NCDC_Co		- 11 2											
Eile		nat <u>T</u> ools <u>D</u>												
	<i>≩</i> 🖫 📆 👙 🖟 💖	¼ 훰 🛍 ÷	Ø	▼ C1 = ()	Σ - A Z Z	l 🛍 🚜	100% 🕶 [2	_ Arial		10 - B	ΙŪ≣	≡ ≡ ⊞	\$%,
₩a 1		b @ Yw≀Rej				12 2	n # 0							
		F(ISBLANK(E												
	A A	В	C C	#112521,II (D	E	#112321,01.	G G	Н		I K		M	N	0
1	Date_PPT				SterlingRCS			-11	Average		MtWeather	SterlingRCS		
					Oteningitoo									
12902						0	0		0.00	0.00	0.00	0.00	0.00	0.00
12903						0	0		0.00	0.00	0.00		0.00	0.00
12904						0	0		0.00	0.00	0.00	0.00	0.00	0.00
12905						0	0		0.00	0.00	0.00	0.00	0.00	0.00
12908 12907						0	0		0.00	1.40	0.00	0.00	0.00	0.00
12907						0.24	0		0.35	0.00	0.00	0.35	0.00	0.00
12900						0.24	0		0.00	0.00	0.20	0.00	0.24	0.00
12910			n			0	0		0.00	0.00	0.00	0.00	0.00	0.00
12911			0.31	0		0	0.5		0.20	0.31	0.00	0.20	0.00	0.50
12912				_		0.17	0.5		0.19	0.00	0.57	0.19	0.00	0.00
12913						0.17	0.03		0.13	0.00	0.00	0.13	0.00	0.03
12914						0.02	0.00		0.01	0.00	0.00	0.01	0.02	0.00
12915				0.01		0.02	0		0.00	0.00	0.00	0.00	0.00	0.00
12916			0			0	0		0.00	0.00	0.00	0.00	0.00	0.00
12917			0.21	0		Ö	Ö		0.05	0.21	0.00	0.05	0.00	0.00
12918			0.12			0	0		0.03	0.12	0.00	0.03	0.00	0.00
12919			0.43			Ö	0		0.11	0.43	0.00	0.11	0.00	0.00
12920			0.05	0		0	0.44		0.12	0.05	0.00	0.12	0.00	0.44
12921			0	0.34		0.27	0.01		0.16	0.00	0.34	0.16	0.27	0.01
12922			0	0.04		0.1	0		0.04	0.00	0.04	0.04	0.10	0.00
12923	June 16, 1972	6	0	0.01		0	0.02		0.01	0.00	0.01	0.01	0.00	0.02
12924	June 17, 1972	6	0.18	0.3		0.53	0.37		0.35	0.18	0.30	0.35	0.53	0.37
12925	June 18, 1972	6	0.39	0.05		0.29	0.11		0.21	0.39	0.05	0.21	0.29	0.11
12926			0			0.21	0		0.08	0.00	0.12	0.08	0.21	0.00
12927	June 20, 1972	6	1.1	0.01		0	0.55		0.42	1.10	0.01	0.42	0.00	0.55
12928			8.26			0.4	10.67		4.98	8.26	0.59	4.98	0.40	10.67
12929		6	1.28	7.67		10.48	1.96		5.35	1.28	7.67	5.35	10.48	1.96
*****		_	_ ^				~		^			^		A 17

Data Management

PROVISIONAL RESULTS

Loudoun County Water Resources Data Model

Initial Data Analyses

Types of Data Analyzed

- Precipitation
- Streams stage/discharge and water quality
- Groundwater wells, quantity, and quality
- On-site sewage disposal systems
- Other data for overall assessment of conditions

Examples of Initial Data Analyses

All example results are preliminary and subject to revision

National Climatic Data Center

• Five stations: Mt. Weather (1948+), Lincoln (1930+), Sterling RCS (1977+), Dulles Airport (1963+), and The Plains in Fauquier County (1954+)

US Geological Survey

• Two real-time stations: Lovettsville & Limestone Branch (both 2002+)

	Lincoln	Mt Weather	Sterling	ThePlains	Dulles
Total # days reported in POR	27,577	20,852	10,468	18,564	14,214
# Days with zero precipitation	20,770	14,663	7,032	12,909	9,708
# Days with precipitation	6,807	6,189	3,436	5,655	4,506
% Days with zero precipitation	75.3%	70.3%	67.2%	69.5%	68.3%
% Days with precipitation	24.7%	29.7%	32.8%	30.5%	31.7%

Daily Precipitation Totals (inches) by Year

Entire Period of Record

	Lincoln	MtWeather	SterlingRCS	ThePlains	Dulles
Median	40.88	40.50	40.97	41.63	39.78
Max	60.22	62.53	62.18	58.71	59.04
Min	20.35	24.36	32.23	26.98	28.92
Std Dev	6.95	7.46	7.71	7.08	6.44
Skewness	0.30	0.42	0.77	0.33	0.67

Selected Common Period 1977-2001

	Lincoln	MtWeather	SterlingRCS	ThePlains	Dulles
Median	39.43	43.01	40.47	42.22	41.37
Max	60.22	59.70	59.04	58.42	51.68
Min	28.86	26.16	32.23	26.98	31.51
Std Dev	7.39	7.29	7.09	7.75	5.68
Skewness	0.84	0.24	0.85	-0.02	0.09

- Stream flow at ten gaging stations
 - Three long-term
 - Seven since 2001
- Daily flow and 15-minute real time data
- Baseflow and low flow calculations
- Calculations of groundwater recharge

PROVISIONAL RESULTS

01644280 BROAD RUN NEAR LEESBURG, VA

	Minim	num dai	ly flow											
		5th pe	ercentil	le										
			10th	percent	tile									
				25th	percent	tile								
					Media	Median								
				i			ercentile							
						. 5011 p		rcentile						
						I	30th pe							
								yotn pe	percentile					
									Maximun	n daily flow				
										Years of record				
January	7.50	8.72	12.6	24.1	34.3	58.9	515	625	855	4				
February	8.71	10.0	12.4	16.7	43.1	79.6	358	528	885	3				
March	8.69	27.1	33.8	43.5	92.4	238	538	577	995	4				
April	16.7	23.5	25.2	47.4	74.3	228	612	792	1,320	4				
May	14.8	21.9	25.7	33.6	69.9	245	431	857	1,160	4				
June	10.4	12.0	17.8	30.5	71.1	127	227	400	549	4				
July	2.60	3.58	7.36	18.6	43.7	80.2	216	518	697	4				
August	1.64	1.85	2.92	10.3	22.7	55.0	101	117	186	4				
September	3.16	3.36	3.57	4.25	25.0	75.0	251	644	870	4				
October	4.8 1	6.50	8.41	16.3	27.5	76.1	146	265	525	3				
November	3.73	3.81	4.06	30.6	86.9	238	383	508	556	4				
December	6.27	13.3	17.3	30.2	95.0	191	418	598	799	4				

PROVISIONAL RESULTS

USGS Real-time Streamflow

Readings per Day

Number of Stations

Number of Readings

PROVISIONAL RESULTS

15-minute readings	
Start Date	11/19/06
End Date	08/16/07
Number of Days	270

120

10

324,000

Real-Time Data for Example Two-Day Period

PROVISIONAL RESULTS

Baseflow Separation

PROVISIONAL RESULTS

Baseflow Statistics

Г	Previously Published												ns usin	g DFLOW	3
Station number	Station name	Period of record	Site type	Number of Discharge Values	Drainage area (mi2)	Mean base flow (ft3/s)	7Q2 (ft3/s) Historic	7Q10 (ft3/s) Historic	Base-flow variability index	Stream Gages	Station_ID	Period of record	Days in Record	7Q2 (ft3/s) Current	7Q10 (ft3/s) Current
1636690	Piney Run near Lovettsville	Prior to 1997	PR	11	13.7	8.75	0.53	0.11	0.93	Piney Run	1636690	2003- 2007	1,825	1.03	
										South Fork Catoctin	1638350	2003- 2007	1,825	1.78	
										North Fork Catoctin	1638420	2003- 2007	1,825	0.56	
1638480	Catoctin Creek at Taylorstown	1973-84	CR	-	89.6	60.6	6.8	2.9	0.75	Catoctin	1638480	1973- 2007	12,782	4.81	0.63
	Potomac River Tributary No 1 near Lucketts	Prior to 1997	PR	-	2.95		0.1	0.04	0.65						
										Limestone Branch	1643590	2003- 2007	1,825	1.43	
1643600	Limestone Branch Tributary No 1 near Leesburg	Prior to 1997	PR	-	6.82		1.2	0.6	0.39						
1643700	Goose Creek near Middleburg	1967-84	CR		123	97.1	6	0.71	0.91	Goose Creek (Middleburg)	1643700	1967- 2007	14,974	4.56	0.02
1643800	North Fork Goose Creek at Route 722 near Lincoln	Prior to 1997	PR	9	24		1.1	0.34		North Fork Goose Creek	1643805	2003- 2007	1,825	3.07	
1643950	Goose Creek at Oatlands	Prior to 1997	PR	9	276	138	12	2.9	0.82						
1643988	Little River near Oatlands	Prior to 1997	PR	-	47.7	26	2.1	0.5	0.81						
										Beaverdam Creek	1643880	2003- 2007	1,825	0.31	
1643990	Howsers Branch near Oatlands	Prior to 1997	PR		5.98		0	0							
1644000	Goose Creek near Leesburg	1931-84	CR		332	191	12	2.5	0.91	Goose Creek (Leesburg)	1644000	1911- 2007	35,428	10.4	1.77

7Q10 - Seven-day, consecutive low flow with a ten year return frequency; the lowest stream flow for seven consecutive days that would be expected to occur once in ten years.

Т		Leesburg	1997				0.20	0.02	П	 10-14200	2007	.,020	4.00	T
ı	1644283	Potomac River Tributary No 2 near Sterling	Prior to 1997	PR	-	3.47	0	0						

PROVISIONAL RESULTS

Average Calculation of Recharge from Streamflow

Name	Abbreviation	Site_no	Year of First Complete Record	Annual Average for Entire Record (in/yr)	Annual Average for Recent 2002-2005 (in/yr)
South Fork Catoctin	SF_Cat	1638350	2002	12.67	12.67
North Fork Catoctin	NF_Cat	1638420	2002	12.36	12.36
Catoctin	Cat	1638480	1972	10.29	11.79
Piney Run	Piney	1636690	2002	13.72	13.72
Limestone Branch	Lime	1643590	2002	12.66	12.66
North Fork Goose Creek	NF_GC	1643805	2002	14.12	14.12
Beaver Dam Creek	Beaver	1643880	2002	13.62	13.62
Goose Creek (Middleburg)	GC_Middle	1643700	1970	12.49	14.91
Goose Creek (Leesburg)	GC_Lee	1644000	1930	9.26	11.76
Broad Run	BR	1644280	2002	8.71	8.71
Average				11.99	12.63

PROVISIONAL RESULTS

Estimated Recharge in Watersheds with Multi-Year Stream Flow Records

Calculation of Recharge Previously Published

Published Recharge Estimates

The USGS has published recharge estimates at selected sites in Loudoun County. Calculations were performed using partial records (PR) using 9 to 11 stream flow measurements and from complete records (CR) where longer term gaging stations had been established. Published data appear in publications Hayes, 1991 and Nelms, et al, 1977.

	Publishe	d USG	S	
Station number	Station name	Perio d of record	Site typ e	Effective recharge (in/yr)
163669 0	Piney Run near Lovettsville	Prior to 1997	PR	8.67
163848 0	Catoctin Creek at Taylorstown	1973- 84	CR	9.18
164370 0	Goose Creek near Middleburg	1967- 84	CR	10.72
184400 0	Goose Creek near Leesburg	1931- 84	CR	7.79

Calculations using RORA

Period of record	Effective recharge (in/yr)	Period of record	Days in Recor d	Effective recharge (in/yr)
	$\langle \langle \rangle \rangle$	2003- 2007	1,825	13.72
1973-84	10.94	1973- 2007	12,782	10.29
1987-84	13.12	1967- 2007	14,974	12.49
1931-84	8.91	1911- 2007	35,428	9.263

Overall the published effective recharge values in 1984 are less than those calculated using the RORA program. The reason is likely the methodology used.

- DEQ Data available for 142 sampling stations in Loudoun County and contributing watersheds.
 - 162 Parameters
 - 88,000+ Individual analyses
- 19 stations have long sampling records and were chosen for further analysis.
- Analysis Includes:

Summary Statistics

- by Site
- by Month
- by Analyte

Surface Water Quality Sampling Sites: DEQ

Par am eter Nam e	Count	Mean	Median	Standard deviation	Coeff. of variation	Minimum	Maximum	Range	Lower quartile	Upper guartile	Interquartile range	Stnd. skewness
Field Turbidity (NTU)	1100	13.74	6.20	53.14	387%	0.83	1540	1539.17	3.93	10.8	6.87	307.61
Specific Conductance (uS/cm)	1659	206.40	171.00	120.57	58%	31.1	1893	1861.9	135.2	235	99.8	61.1711
BOD 5 DAY (mg/L)	2981	2.39	2.00	2.57	107%	0.04	54	53.96	1	2	1	152.092
COD (mg/L)	2145	13.23	11.00	11.34	86%	0	181	181	7	16	9	121.035
pH (standard units)	1950	6.97	7.04	0.63	9%	0	10.28	10.28	6.69	7.39	0.7	-24.758
Tot. Alkalinity as CaCO3 (mg/L)	1955	51.51	42.00	30.27	59%	0	321	321	30	66	36	28.409
Total Residue (mg/L)	2101	153.22	127.00	102.37	67%	0	2167	2167	102	177	75	159.905
Total Nitrogen (mg/L)	550	1.28	1.23	0.48	38%	0.18	3.21	3.03	0.92	1.56	0.64	5.43584
NH3-N Total (mg/L)	4585	0.25	0.10	1.06	428%	0	22.5	22.5	0.04	0.1	0.06	299.44
NO2-N Total (mg/L)	4120	0.06	0.01	0.49	830%	0	28	28	0.01	0.02	0.01	1225.59
NO3-N Total (mg/L)	3541	1.18	0.95	1.27	107%	0	27	27	0.49	1.5	1.01	139.75
Total Kjeldahl N (mg/L)	4122	0.78	0.40	3.56	458%	0.01	183.9	183.89	0.3	0.6	0.3	978.75
NO2 and NO3 N-TOTAL	1048	1.13	0.98	0.87	77%	0.02	9	8.98	0.55	1.5	0.95	34.757
Total Phosphorous (mg/L P)	3344	0.11	0.10	0.18	161%	0.01	4.8	4.79	0.05	0.1	0.05	311.42
Dissolved PO4 (mg/L P)	1392	0.22	0.03	5.42	2510%	0	202	202	0.02	0.06	0.04	567.39
Total Organic Carbon (mg/L)	2201	6.31	5.10	4.52	72%	0	62	62	3.66	8	4.34	75.820
Total Hardness (mg/L CaCO3)	1804	72.98	60.50	41.00	56%	0.45	523	522.55	47	89.55	42.55	47.477
Dissolved Calcium (mg/L)	37	15.14	14.00	9.84	65%	1	45.6	44.6	9.6	16.8	7.2	3.0315
Total Chloride (mg/L)	1567	17.64	11.50	22.06	125%	0	295	295	8.2	18.2	10	90.041
Total SO4 (mg/L)	1487	15.95	14.30	8.57	54%	0	144	144	11.1	19	7.9	70.696
Total Fluoride (mg/L)	399	0.18	0.12	0.13	72%	0.03	0.6	0.57	0.1	0.2	0.1	13.432
Dissolved Silica (mg/L)	511	12.52	12.60	3.80	30%	2.1	40	37.9	10.1	15	4.9	5.1646
Dissolved Arsenic (ug/L)	29	0.75	0.21	1.48	198%	0.1	5	4.9	0.1	0.4	0.3	5.8697
Total Arsenic (ug/L)	306	3.78	2.00	3.39	90%	0	11	11	1	5	4	7.9636
Total Cadmium (ug.L)	319	7.48	10.00	4.16	56%	0	32.99	32.99	2.5	10	7.5	-0.273
Dissolved Chromium (ug/L)	29	2.53	0.10	9.48	374%	0.1	50	49.9	0.1	0.18	0.08	10.644
Total Chromium (ug/L)	392	11.40	10.00	10.23	90%	0	50	50	10	10	0	24.690
Total Coppeer (ug/L)	390	13.33	10.00	11.46	86%	0	99.99	99.99	10	10	0	29.116
Total Iron (ug/L)	132	484.00	350.00	380.48	79%	70	3010	2940	263.96	612.5	348.54	14.487
Dissolved Iron (ug/L)	29	197.76	100.00	370.14	187%	15	2030	2015	85	174	89	10.326
Dissolved Lead (ug/L)	29	0.61	0.10	1.52	250%	0.1	5	4.9	0.1	0.1	0	6.0425
Total Lead (ug/L)	373	8.06	8.00	10.25	127%	0	164.9	164.9	3	10	7	80.633

Statistical Analysis of DEQ Sediment Samples

_	Count	Mean	Median	Standard Deviation	Minimum	Maximum	Range	Standard Skewness	Standard Kurtosis
Arsenic	155	7.49	5.00	9.402	0.9	50	49.1	17.68	29.59
Berylium	122	3.92	5.00	1.787	0.52	10	9.48	-2.42	-0.33
Cadmium	155	2.59	1.00	2.396	0.06	10	9.94	1.13	-3.78
Chromium	155	27.09	25.80	12.911	7.4	75.1	67.7	8.15	8.63
Copper	154	23.94	20.85	14.029	4.5	88	83.5	9.02	12.30
Lead	154	21.21	14.55	25.893	4.4	286	281.6	37.76	182.93
Manganese	76	708.40	670.00	319.175	105	1730	1625	2.58	1.30
Nickel	154	14.47	14.00	6.953	2.1	42	39.9	3.74	2.79
Silver	79	4.44	5.00	1.394	1	5	4	-7.71	4.68
Zinc	155	61.22	59.40	30.669	7	240	233	9.23	20.43
Antimony	65	9.65	5.00	7.981	5	32	27	5.02	1.57
Aluminum	65	13650	13200	4525.450	4800	24200	19400	0.76	-1.15
Selenium	121	2.27	1.00	4.304	0.9	34	33.1	23.44	68.49
Thallium	121	5.06	5.00	2.332	1	22	21	14.84	52.10
PCP (ug/kg)	86	81.64	80.00	39.945	0.01	190	189.99	-0.29	0.48
Aldrin (ug/kg)	116	30.97	20.00	35.904	0	120	120	4.35	-1.01
DDD (ug/kg)	82	102.19	50.00	440.307	0.1	4030	4029.9	33.20	149.87
DDE (ug/kg)	82	51.64	48.50	32.813	0.1	110	109.9	0.86	-2.08
DDT (ug/kg)	82	51.58	43.00	32.017	0.1	100	99.9	1.26	-1.98
Dieldrin (ug/kg)	86	48.48	30.00	36.629	0.1	120	119.9	1.51	-2.72
Endrin (ug/kg)	86	131.51	70.00	538.662	0.1	5055	5054.9	34.81	160.92
Toxaphene (ug/kg)	82	290.98	170.00	305.965	1	1000	999	5.75	2.37
Heptachlor (ug/kg)	86	29.05	20.00	28.262	0.1	100	99.9	4.04	0.67
Total PCBs (ug/kg)	85	208.58	89.00	253.679	1	1000	999	6.06	4.25
Atrazine (ug/kg)	41	0.03	0.00	0.045	0	0.1	0.1	2.84	-1.13
Mercury	146	0.26	0.30	0.127	0.06	0.96	0.9	9.04	19.04

Two Sources of Groundwater Well Data:

- Health Department Data
 - Over 19,000 total well records
 - 16,000+ records with "Active" or "Installed" status
- County Hydrogeologic Study Requirement
 - 163 hydrogeologic study reports submitted since mid-1980s
 - ~ 2000 total test wells
 - Most hydrostudy test wells are included in Health Dept. records

Types of Analysis:

- Comparison of HD dataset to Hydrostudy dataset
- Historical Trends in Well Data
 - Well Depth by Year
 - Static Water Level by Year
 - Dry Holes
- Well Yield characteristics from Hydrostudy Data
 - Yields
 - Specific Capacity
 - Transmissivity
 - Storativity
 - Yield Zones
- Well Data by Rock Classification

Groundwater Quality

Groundwater Quality Samples from Health Department Permitting Requirements:

- Samples reported from over 4,700 wells
- 98 Analytes per sample
- More than 200,000 individual Analyses
- Only 25 of 98 analytes had >1% detections

PROVISIONAL RESULTS

Summary Statistics for Groundwater Quality Results from National Testing Laboratories.

	Count	Mean	Median	Geometric mean	Standard deviation	Minimum	Maximum	Range	Stnd. skewness	Stnd. kurtosis
pH*	1799	7.58	7.60	7.54	0.70	5	12	7	15.39	36.04
Alkalinity	1800	106.4	100.0	96.5	53.38	6.2	1100	1093.8	95.81	717.59
Calcium	1475	28.1	25.0	23.4	24.33	1	630	629	189.12	2071.77
Chloride	1800	8.1	2.5	4.8	16.26	2.5	440	437.5	228.02	2538.41
Aluminum	1795	0.19	0.05	0.09	0.49	0.05	9.7	9.65	159.92	1085.66
Fluoride	1795	0.33	0.25	0.28	0.37	0.25	8.3	8.05	199.12	1691.53
Iron	1460	2.13	0.98	0.84	3.13	0.01	32	31.99	55.33	145.68
Magnesium	1475	8.48	7.10	6.84	5.64	0.002	56	55.998	36.69	78.14
Manganese	1458	0.14	0.11	0.07	0.15	0.002	2	1.998	51.51	182.34
Nitrate	1474	0.90	0.25	0.42	1.94	0.25	29	28.75	101.94	523.74
Sulfate	1475	13.3	10.0	8.8	27.13	2.5	660	657.5	245.29	2431.15
TDS	1793	132.6	120.0	119.2	77.84	2	1600	1598	116.28	809.31
Turbidity**	1789	16.29	5.00	4.79	43.31	0.05	1000	999.95	187.88	1589.77
Zinc	1793	0.014	0.002	0.004	0.10	0.002	3.6	3.598	456.33	7315.99
Sodium	1474	9.56	7.00	7.57	9.65	0.5	140	139.5	91.67	437.66
Copper	1794	0.011	0.002	0.003	0.09	0.002	3.3	3.298	478.52	7589.63

Groundwater Quality

Groundwater Quality

On-Sit	e Waste Disposal Permit Types
Permit type (VDH-defined)	Permit type description
Conventional (Septic with Gravity)	Septic tank with traditional gravity fed drainfield.
2. Conventional (Pump)	Traditional septic tank with above grade drainfield, pump required.
3. Alternative Dispersal System Only	Non-traditional dispersals, such as drip irrigation, mounds, peat, etc
4. Alternative Pretreatment System	Pre-treatment units required prior to dispersal.
5. Alternative Discharging	Discharges to sewage treatment plants. Tracking numbers will be "PSTP".
6. Commercial/Class 5 Well	Systems permitted by state as Class 5 injection wells.
7. Pump & Haul	No dispersal system. Tank is pumped.
8. Experimental	Aquarobic Mounds
9. Conditional	Conditions placed on system, such as water conservation devices.
10. Privy	No dispersal.

Permit Type (VDH-defined)	Frequency
1. Conventional (Septic with Gravity)	11393
2. Conventional (Pump)	1569
3. Alternative Dispersal System Only	310
4. Alternative Pretreatment System	601
5. Alternative Discharging	37
6. Commercial/Class 5 Well	2
7. Pump & Haul	65
8. Experimental	40
9. Conditional	33
10. Privy	85

Initial Data Analyses

Other Preliminary Data for Assessing Water Resource Conditions

PROVISIONAL RESULTS

Stream Assessment Studies

PROVISIONAL RESULTS

Conventional Drainfield Potential

Groundwater Recharge Potential

Annual Water & Wastewater Reports prepared by by Draper Arden

Rates in MGD were calculated from Equivalent Residential Unit values http://www.daa.com/news/surveys.htm

	LCSA	Leesburg	Purcellville	Round Hill	Middleburg	Hamilton	Lovettsville	Total MGD
ERU	250	350	250	250	250	250	250	
2000	10.400	3.837	0.350	0.139	0.037	no data	no data	14.8
2001	no data	4.831	0.340	no data	no data	no data	0.049	5.2
2002	12.620	5.311	0.374	0.130	no data	0.131	no data	18.6
2003	13.277	5.487	0.373	0.172	0.206	0.130	no data	19.6
2004	13.950	5.704	0.490	0.586	0.062	0.125	no data	20.9
2005	14.237	5.639	0.598	0.293	0.660	0.125	no data	21.6
2006	15.485	5.538	no data	0.142	no data	0.150	no data	21.3

Equivalent Residential User: One equivalent residential water connection equals total water consumption per day divided by 250 gallons per day, except Leesburg is 350 gallons per day.

2007 Estimate 16.50 5.80 0.70 0.30 0.50 0.17 0.10	24.1
--	------

PROVISIONAL RESULTS

Waste Water Treatment Plants

PROVISIONAL RESULTS

Potential Pollution Sources

*** End ***

